

Overview

- Use ambient noise in ocean to determine environmental parameters
 - Seabed depth
 - Sub-bottom sediment layering & properties
- Sponsor: ONR (Office of Naval Research)
- People
 - Dr Martin Siderius (Associate Professor)
 - John Gebbie (PhD research assistant)
 - Lanfranco Muzi (PhD research assistant)
 - Joel Paddock (B.S. student)

Vertical Line Array

- 32 elements
- .18 m spacing
- 12 kHz sampling
- Buoyed at surface, but depth adjustable
- Drifting

Conventional Beamforming

Delay-and-sum

Increase gain in certain direction

MVDR Adaptive Beamforming

Acoustics Research

- **MVDR** drives a **NULL** to reduce off-look-angle noise sources
- K is cross-spectral density matrix

look angle

$$\hat{W}_{mvdr} = \frac{K^{-1}\hat{W}_{c}}{\hat{W}_{c}^{+}K^{-1}\hat{W}_{c}}$$

WNGC Adaptive Beamforming

- White Noise Gain Constraint
- Helps deal with
 - Mismatch (small errors in array geometry)
 - Snapshot deficiency (causes cross spectral density matrix to be less than full rank)

$$\hat{W}_{wngc} = \frac{\left[K + \varepsilon I\right]^{1} \hat{W}_{c}}{\hat{W}_{c}^{+} \left[K + \varepsilon I\right]^{1} \hat{W}_{c}}$$

Coherent 90° Results

- At ±90°, reflections from seabed are coherent with noise at surface
- Can cross-correlate to obtain seabed impulse response
- Comparison to active sonar (different data)
 Active sonar (left)
 Ambient noise (right)

Publications

- M. Siderius, H. Song, P. Gerstoft, W. S. Hodgkiss, P. Hursky, and C. Harrison, "Adaptive passive fathometer processing," The Journal of the Acoustical Society of America, vol. 127, no. 4, pp. 2193-2200, April 2010. [Online]. Available: http://dx.doi.org/10.1121/1.3303985
- M. Siderius, C. H. Harrison, and M. B. Porter, "A passive fathometer technique for imaging seabed layering using ambient noise," *The Journal of the Acoustical Society* of America, vol. 120, no. 3, pp. 1315-1323, September 2006. [Online]. Available: http://dx.doi.org/10.1121/1.2227371
- P. Gerstoft, W. S. Hodgkiss, M. Siderius, C.-F. Huang, and C. H. Harrison, "Passive fathometer processing," *The Journal of the Acoustical Society of America*, vol. 123, no. 3, pp. 1297-1305, March 2008. [Online]. Available: http://dx.doi.org/10.1121/1.2831930
- C. H. Harrison and M. Siderius, "Bottom profiling by correlating beam-steered noise sequences," *The Journal of the Acoustical Society of America*, vol. 123, no. 3, pp. 1282-1296, March 2008. [Online]. Available: http://dx.doi.org/10.1121/1.2835416
- M. Siderius, H. Song, P. Gerstoft, W. S. Hodgkiss, P. Hursky, and C. Harrison, "Adaptive passive fathometer processing," October 2009.

