

THz Synthetic Aperture Slides

NEAR-Lab - 1 2010-10-29, Gabe

NEAR-Lab Imaging Capability

NEAR-Lab Northwest Electromagnetics & **Acoustics Research**

Pulsed THz Spectrometer

Angle & polarization diversity

CW Swept Frequency

Two port s-parameter measurements 0.045 – 0.780 THz

Pulsed THz Imaging System

8" x 8" 2D scanning

1 cm

1 cm

UNIVERSITY

Funded by NSF MRI, Murdock Foundation, & ONR

Processing Approaches for 3D THz Spectroscopy

	Optical Lens	Time-gating	Synthetic aperture processing
Advantages	Optical focus determined by lens (good depth resolution)	Ability to produce multiple images/depths from sensor data*	Ability to produce multiple images/depths from sensor data*; coherent gain from sensor combination
Disadvantages	Requires mechanical scanning for multiple depths	Reduces spectral resolution; material properties (phase speed) must be known or assumed	Complexity; material properties (phase speed) must be known or assumed

*Can scan in x-y to produce 2D image data

UNIVERSITY

NEAR-Lab Measurement Capability

Pulsed THz Spectrometer

Angle & polarization diversity

CW Swept Frequency

Two port s-parameter measurements 0.045 – 0.780 THz

Pulsed THz Imaging System

8" x 8" 2D scanning

1 cm

1 cm

UNIVERSITY

Funded by NSF MRI, Murdock Foundation, & ONR

Synthetic Aperture Processing using a Virtual Image Source

Synthesize image at z₀ using coherent addition of sensors:

$$\left|\sum_{m=1}^{N}\sum_{n=1}^{N}E(x_{n}, y_{m}, f) F_{mn}(r_{jk}) e^{-2ik_{0}R_{mn}(r_{jk})}\right|^{2}$$

where F_{mn} is a tapering window, and R_{mn} depends on choice of z_0

NEAR-Lab

Synthetic Aperture Image Single Ball Bearing (Target)

Northwest Electromagnetics & Acoustics Research

NFAR-I ab

- Image of single steel ball-bearing (3.9 mm)
 - Synthesized image has better resolution achieved from coherent gain (multiple sensor combination)

Portland State

- Synthesis is depth dependent (image at $z_0 = 10$ mm)

NEAR-Lab - 6 2010-10-29, Gabe

Pellet with Embedded Scatterers

Northwest Electromagnetics & Acoustics Research

- Two ball bearings (3.9 mm) embedded in polyethylene (PE) pellet
 - Targets offset in depth and lateral position
 - Imaging equation adjusted for phase introduced with PE

Depth-Dependent Images using Synthetic Aperture Processing

Portland State

UNIVERSITY

NEAR-Lab