

Radiative Transfer to Model Ocean Bottom Scattering

Jorge Quijano

Lisa M. Zurk

Portland State University, Portland, Oregon

NEAR-Lab - 1 070412, jeq

Classical Model with Homogeneous Layers

 $\mathbf{d}_{\mathbf{A}}$

NEAR-Lab

 α_n : attenuation R_{n,n+1}: Ref. coefficient between layers n and n+1 $T_{n,n+1}$: Trans. coefficient between layers n and n+1 k_n : wavenumber, where $k_n = \omega/c_n$

$$B_0(f) = R_{01}e^{-\alpha_0(f)2d_0}e^{-jk_02d_0} = R_{01}e^{-\alpha_0(f)2d_0}e^{-j2\pi g}e^{-j2\pi g}e^{-j2\pi$$

or in general

 $B_n(f) = R_{n,n+1} \prod_{q=1}^{q=n-1} T_{q+1,q} T_{q,q+1} \prod_{q=1}^n e^{-2\alpha_q(f)d_q} e^{-j2\pi f\tau_q}$ $H(f) = \sum_{n=1}^{N} B_n(f)$ Transfer function

 $h(t) = F^{-1} \{ H(f) \}$ Impulse response of

the layered media

Problem: Can we handle more complex environments based on this formulation?

 c_N, ρ_N, α_N

The Real environment

<u>Goal</u>: formulate a mathematical model that includes rough surfaces, volume scatterers and layers.

Examples of ocean bottom sediments

Core samples from the New Jersey shelf, courtesy of Dr. Altan Turgut, Naval Research Laboratory

Portland State

Proposed Solution: Radiative Transfer Theory

Northwest Electromagnetics & Acoustics Research

NEAR-Lab

Output energy - Input energy = Emission-Extinction

Or

Radiative transfer

- Computationally less expensive.
- Describes intensity as a function of time, depth, direction of propagation within each layer.
- Characterizes layers in terms of emission and absorption coefficients.

$$\frac{\partial I(l,t)}{\partial l} + \frac{1}{c} \frac{\partial I(l,t)}{\partial t} = \eta \varepsilon(l,t) - \eta \sigma I(l,t)$$

ε: emission coefficient
σ: absorption coefficient
c: speed of propagation
η: density of scatterers

